亚虎娱乐_亚虎娱乐游戏_亚虎娱乐777官网

您现在的位置:亚虎娱乐 > 成考动态 > 成考报名 >  > 正文

勾股定理”的由来

  勾股定理是初等几何中的一个基本定理。所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方。这个定理有十分悠久的历史,几乎所有文明古国(希腊、中国、埃及、巴比伦、印度等)对此定理都有所研究。

  勾股定理在被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。但毕达哥拉斯对勾股定理的证明方法已经失传。著名的希腊数学家欧几里得在巨著《几何原本》(第Ⅰ卷,命题47)中给出一个很好的证明。

  中国最早的一部数学著作——《周髀算经》(约成书于公元前1世纪)的开头,记载着一段周公向商高请教数学知识的对话:

  昔者周公问于商高曰:“窃闻乎大夫善数也,请问昔者包牺立周天历度——夫天可不阶而升,地不可得尺寸而度,请问数安从出?”

  商高曰:“数之法出于圆方,圆出于方,方出于矩,矩出于九九八十一。故折矩,以为句广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所生也。”

  这段对话翻译过来就是,周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段地丈量,那么怎样才能得到关于天地得到数据呢?”

  商高回答说:“数的产生来源于对方和圆这些形体的认识。其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。这个原理是大禹在治水的时候就总结出来的。”

  如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对线年左右的西周时期, 比毕达哥拉斯要早了五百多年。其中所说的“勾三股四弦五”,正是勾股定理的一个应用特例。所以现在数学界把它称为勾股定理常恰当的。

  在稍后一点的《九章算术》一书中(约在公元50至100年间),勾股定理得到了更加规范的一般性表达。书中的《勾股章》说:“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”

  《九章算术》系统地总结了战国、秦、汉以来的数学成就,共收集了246个数学的应用问题和各个问题的解法,列为九章,可能是所有中国数学著作中影响最大的一部。

  中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明。最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。

  赵爽用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。他的这个证明可谓别具匠心,极富创新意识。

  以后的数学家大多继承了这一风格并且有发展,只是具体图形的分合移补略有不同而已。例如稍后一点的魏晋期间的数学家刘徽在证明勾股定理时也是用以形证数的方法,刘徽用了“出入相补法”,他把勾股为边的正方形上的某些区域剪下来(出),移到以弦为边的正方形的空白区域内(入),结果刚好填满,完全用图解法就解决了问题。

  中国古代数学家们对于勾股定理的发现和证明,界数学史上具有独特的贡献和地位。尤其是其中体现出来的“形数统一”的思想方法,更具有科学创新的重大意义。